Quadcopter Stability Control System Using PID And Kalman Filter

Authors

  • Miranti Sukmaningrum Mahasiswa
  • Ahmad Wilda Yulianto State Polytechnic of Malang
  • Muhammad Nanak Zakaria State Polytechnic of Malang

DOI:

https://doi.org/10.33795/jartel.v13i4.470

Keywords:

derivative, flight controller, integral, kalman filter, proporsional, quadcopter, tuning PID

Abstract

Quadcopter is an Unmanned Aerial Vehicle (UAV) that uses 4 motors arranged crosswise as a propulsion system. The quadcopter's capabilities are supported by a main component called the flight controller or control system. The operation of this unmanned aircraft is controlled automatically through a program run from the GCS (Ground Control Station) so that the quadcopter can fly according to the desired destination. The control system is needed to maintain the balance of the quadcopter while flying and maneuvering to remain stable. PID (Proposional Integral Derivative) method as a counterweight when manoeuvring on the y-axis (pitch) and x-axis (roll) and Kalman Filter as processing the resulting sensor output. The results of this study show that setting the value for the proportional constant (Kp), integral constant (Ki) and derivative constant (Kd) determines the quadcopter can fly or maneuver well. The gain values used are Kp of 0.135, Ki of 0.135 and Kd of 0.003. However, the output generated by the gyroscope in pitch and roll still has noise caused by the vibration of the mover during flight and maneuvering. So the Kalman filter is needed to find out the value that is close to the actual output of the gyroscope.

References

Grewal, Mohinder S., and Angus P. Andrews. 2001. "Kalman Filtering: Theory and Practice Using MATLAB". New York: John Wilay & Sons, Inc. Second Edition.

Kang, Hyun-Ho, dkk. 2018. “Velocity and Position Estimation of UAVs Based on Sensor Fusion and Kalman Filter,” Proceedings of the Korea Information Processing Society Conference. Vol. 25, No. 2, pp. 430–433, Oktober 2018.

Subrata Rosalia H., Raymond Tarumasely, and Calvin Dwianto Setiawan. 2017. “Perancangan Pengendali Pid Untuk Gerakan Pitch Dan Roll Pada Quadcopter,” JETri., Vol. 14, no. 2, pp. 1-16, Februari 2017.

Al-Sharman, Mohammad K., dkk. 2018. "Auto Takeoff and Precision Terminal-Phase Landing using an Experimental Optical Flow Model for GPS/INS Enhancement," ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. April 2018.

Bachtiar, Mochamad Mobed, dkk. 2021. "PID Control System on Brushless DC Motor for Quadcopter Balance". Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi. Vol. 6. No. 2. pp. 110-114. Juli 2021.

Suyadhi, Taufiq Dwi Septian, dan Arie Prabawati. 2015. Multirotor Modelling - Designing - Building. Yogyakarta: ANDI.

R. P. Padhy, S. Verma, S. Ahmad, S. K. Choudhury, and P. K. Sa, “Deep Neural Network for Autonomous UAV Navigation in Indoor Corridor Environments,” Procedia Comput. Sci., vol. 133, pp. 643–650, 2018, doi: 10.1016/j.procs.2018.07.099.

A. A. Rafiq, S. D. Riyanto, B. D. Aprilas, and R. P. Pratama, “Image Processing untuk Deteksi Objek pada Daerah Bencana,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 20, no. 2, pp. 9–18, 2020, doi: 10.24036/invotek.v20i2.707.

H.-M. Huang, “Autonomy levels for unmanned systems (ALFUS) framework,” vol. I, no. October, pp. 48–53, 2007, doi: 10.1145/1660877.1660883.

P. P. Geurts and I. C. Greffe, “Autonomous navigation of a drone in indoor environments University of Liège,” 2021.

“The Challenges to Developing Fully Autonomous Drone Technology | Ansys.” https://www.ansys.com/blog/challenges-developing-fully-autonomous-drone-technology (accessed Jul. 04, 2022).

J. Moor, “The Dartmouth College Artificial Intelligence Conference: The next fifty years,” AI Magazine, vol. 27, no. 4, pp. 87–91, 2006.

Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.

Z. Gao and X. Wang, Deep learning. 2019.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indonesia., vol. 3, no. 2, pp. 49–56, 2018.

Downloads

Published

2023-12-23

How to Cite

[1]
M. Sukmaningrum, A. W. Yulianto, and M. N. Zakaria, “Quadcopter Stability Control System Using PID And Kalman Filter”, Jartel, vol. 13, no. 4, pp. 380-384, Dec. 2023.