Design and Development of Student Attention System using Face Recognition Based on MTCNN and FaceNet
Keywords:
Attendance system, FaceNet, IP Camera, MTCNNAbstract
Employees use their level of attendance or absence to demonstrate their presence at work or absence from it in an agency. This absence is connected to how discipline is applied, which is decided by each organization or institution. It can be inferred from this that student absenteeism in a setting where there is activity serves to increase discipline and demonstrate attendance. With IP Camera technology, it can be applied to the attendance system using the MTCNN method as face detection and FaceNet to extract high-quality features from the face. The system created can detect faces at a distance of 40 cm – 180 cm with an accuracy of 90.5% and can detect more than 1 object in 1 frame so that the IP Camera function is in accordance with the design in real-time. Tested the object of 3 pairs of twin faces produces a maximum accuracy of 90% where the level of match between the faces and the data is appropriate.
References
H. Haryanti, S. Muchsin, and J. Administrasi Publik, “Penerapan Model Peningkatan Kedisiplinan Pegawai Berbasis Fingerprint Di MTSN Nagekeo Kabupaten Nagekeo Ntt ( Studi Kasus di MTs. N Nagekeo Kabupaten Nagekeo NTT ),” J. Respon Publik, vol. 13, no. 3, pp. 78–84, 2019.
J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural Networks, vol. 61, pp. 85–117, Apr. 2014, doi: 10.1016/j.neunet.2014.09.003.
Y. Arkhiansyah and D. Setiawan, “Realisasi Cctv Cerdas Berbasis Mikrokontroler Dan Real Time 3D Face Recognition,” J. Inform., vol. 15, no. 2, pp. 188–197, 2015.
K. S. Wibawa, T. Informasi, F. Teknik, U. Udayana, and B. Jimbaran, “Sistem Monitoring Dan Kontrol Visual Keamanan,” pp. 1–8, 2017.
“Pengenalan Wajah Menggunakan Model Facenet Untuk Presensi Pegawai - ITS Repository.”https://repository.its.ac.id/76660/ (accessed Jul. 13, 2021).
K. P. Danukusumo, “Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Citra Candi Berbasis Gpu,” Jul. 2017.
S. Sena, “Pengenalan Deep Learning Part 7?: Convolutional Neural Network (CNN),” 2017. https://medium.com/@samuelsena/pengenalan- deep-learning-part-7-convolutional-neural-network-cnn-b003b477dc94 (accessed Dec. 14, 2018).
“Understanding of Convolutional Neural Network (CNN) — Deep Learning | by Prabhu | Medium.” https://medium.com/@RaghavPrabhu/understanding-of-convolutional- neural-network-cnn-deep-learning-99760835f148 (accessed Jul. 13, 2021).
“Rectified Linear Units (ReLU) in Deep Learning | Kaggle.” https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep- learning (accessed Jul. 13, 2021).
“Menilik Activation Function. Ikatlah Ilmu dengan Menuliskannya. —… | by Pramesti Hatta K. | Medium.” https://medium.com/@opam22/menilik- activation-functions-7710177a54c9 (accessed Jul. 13, 2021).
“Dampak Teknologi Smartphone Terhadap Perilaku Orang Tua Di Desa Touure Kecamatan Tompaso, Mokalu Acta Diurna Komunikasi.” https://ejournal.unsrat.ac.id/index.php/actadiurnakomunikasi/article/view/1 0929 (accessed Jul. 13, 2021).
A. Vedaldi and K. Lenc, “MatConvNet - Convolutional Neural Networks for MATLAB,” Dec. 2014, Accessed: Jul. 13, 2021. [Online]. Available: http://arxiv.org/abs/1412.4564.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014, Accessed: Jul. 13, 2021. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html.
Z. Zhang, “Derivation of backpropagation in convolutional neural network (cnn),” Univ. Tennessee, Knoxville, TN, Oct. 2016, Accessed: Jul. 13, 2021. [Online]. Available: Derivation of backpropagation in convolutional neural network (cnn).
Han, “Bab Ii Landasan Teori,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Moch. Maulana Andhika Candra, Hudiono Hudino, Yoyok Heru Prasetyo Isnomo
This work is licensed under a Creative Commons Attribution 4.0 International License.