Design of Monitoring and Telecontrol System on Cassava Fermentation as Basic Ingredients of Mocaf Flour (Modified Cassava Flour) Based on Internet of Things (IoT)

Authors

  • Rosario Febry Dayu Putra State Polytechnic of Malang
  • Hadiwiyatno Hadiwiyatno State Polytechnic of Malang
  • Nurul Hidayati State Polytechnic of Malang

DOI:

https://doi.org/10.33795/jartel.v13i4.764

Keywords:

android application, carbon dioxide, gas, Fermentation, Mocaf (Modified Cassava Flour), pH, Temperature

Abstract

Mocaf (Modified Cassava Flour) is flour from cassava which is fermented by lactic acid bacteria. The growth temperature for lactic acid bacteria is 30°C-37°C with a fermentation time of 12-24 hours. In previous research, during 24 hours of fermentation at 33°C, mocaf flour produced the highest protein content of 12.87% without using a temperature stabilization system. The success of the fermentation process is indicated by a decrease in the pH value of the fermentation water to 4.5–5.0. In household scale producers, mocaf fermentation is still carried out traditionally at unstable temperatures. Therefore, a system is needed to monitor and control temperature automatically. In this research, the system that has been designed uses an ESP32 microcontroller as the system control center. The pH sensor is used to detect the pH value of water, the gas sensor is used to detect carbon dioxide gas (CO2) and the temperature sensor is used to detect the water temperature value. Peltier elements are used to lower the temperature and heaters are used to increase the temperature of the fermented water. In this research, a successful fermentation process with a pH value of around 5.0 could be achieved within ±12 hours at a temperature of 33°C, ±18 hours at a temperature of 43°C, and ±25 hours at a temperature of 23°C. In this study the mocaf fermentation process was completed in only ± 12 hours at a temperature of 33°C which is the ideal temperature for the growth of lactic acid bacteria.

References

A. Subagio, W. Siti, Y. Witono, and F. Fahmi, PROSEDUR OPERASI STANDAR (POS) Produksi Mocal Berbasis Klaster. Trenggalek: Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center - Institut Pertanian Bogor, 2008.

K. Khotimah, “Pengaruh Subtitusi Tepung Mocaf (Modified Cassava Flour) terhadap Sifat Fisik dan Sensoris Bolu Kukus,” Bul. Loupe, vol. 15, no. 01, p. 8, 2019, doi: 10.51967/buletinloupe.v15i01.28.

W. A. Nugroho, B. D. Argo, and S. W. Pamungkas, “Analisis Teknik Dan Finansial Pembuatan Mocaf ( Modified Cassava Flour ) Di Kelompok Tani Usaha Maju II di Desa Argosari Kecamatan Jabung Kabupaten Malang,” J. Keteknikan Pertan. Trop. dan Biosist., vol. 10, no. 10, pp. 19–31, 2018.

Badan Standardisasi Nasional, “SNI Tepung Mocaf (SNI 7622:2011),” Badan Stand. Nas., 2011.

M. Yerizam, S. Andayana, and U. Oktavia, “Effect of Temperature and Starter Concentration on the Fermentation Process in Making MOCAF,” J. Phys. Conf. Ser., vol. 1500, no. 1, pp. 2–6, 2020, doi: 10.1088/1742-6596/1500/1/012050.

Y. R. Meutia, N. Christian Siregar, F. Hasanah, N. Lestari, and H. Helmi, “Pengaruh Waktu Fermentasi dan Pengadukan pada Fermentor Tank Lini Proses Mokaf 4.0 terhadap Karakteristik Reologi Mokaf yang Dihasilkan,” War. Ind. Has. Pertan., vol. 38, no. 2, p. 169, 2021, doi: 10.32765/wartaihp.v38i2.7413.

D. Ramdani, “Rancang Bangun Sistem Otomatisasi Suhu Dan Monitoring pH Air Aquascape Berbasis IoT (Internet Of Thing) Menggunakan Nodemcu Esp8266 Pada Aplikasi Telegram,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 3, no. 1, pp. 59–68, 2020, doi: 10.20895/INISTA.V2I2.

M. Yusfi, F. Gandi, and H. S. Palka, “Analisis Pemanfaatan Dua Elemen Peltier Pada Pengontrolan Temperatur Air,” Spektra J. Fis. dan Apl., vol. 2, no. 1, pp. 9–14, 2017, doi: 10.21009/spektra.021.02.

W. Widjonarko, S. Sumardi, K. Anam, and S. M. Cahyani, “Prototype Alat Fermentor Stater Modified Cassava Flour Menggunakan Metode Fuzzy Mamdani,” J. Arus Elektro Indones., vol. 7, no. 1, p. 24, 2021, doi: 10.19184/jaei.v7i1.24321.

Y. Efendi, “Internet Of Things (Iot) Sistem Pengendalian Lampu Menggunakan Raspberry Pi Berbasis Mobile,” J. Ilm. Ilmu Komput., vol. 4, no. 1, pp. 19–26, 2018, doi: 10.35329/jiik.v4i1.48.

Muliadi, A. Imran, and M. Rasul, “Pengembangan Tempat Sampah Pintar Menggunakan Esp32,” J. Media Elektr., vol. 17, no. 2, pp. 2721–9100, 2020.

H. Kusumah and R. A. Pradana, “Penerapan Trainer Interfacing Mikrokontroler Dan Internet of Things Berbasis Esp32 Pada Mata Kuliah Interfacing,” J. CERITA, vol. 5, no. 2, pp. 120–134, 2019, doi: 10.33050/cerita.v5i2.237.

T. Application, “3A, 1.5MHz, 28V Step-Down Converter,” pp. 1–17, 2011.

E. Mufida, R. S. Anwar, R. A. Khodir, and I. P. Rosmawati, “Perancangan Alat Pengontrol pH Air Untuk Tanaman Hidroponik Berbasis Arduino Uno,” Inov. dan Sains Tek. Elektro, vol. 1, no. 1, pp. 13–19, 2020.

A. eka Fauzi, U. Niswatul, and Y. Alam, “Rancang Bangun Ph Meter Air Terkoneksi Smartphone Dengan Modul Wifi Nodemcu,” J. Elektron. dan Otomasi Ind., vol. 8, no. 3, p. 253, 2021, doi: 10.33795/elk.v8i3.307.

Downloads

Published

2023-12-31

How to Cite

[1]
R. F. Dayu Putra, H. Hadiwiyatno, and N. Hidayati, “Design of Monitoring and Telecontrol System on Cassava Fermentation as Basic Ingredients of Mocaf Flour (Modified Cassava Flour) Based on Internet of Things (IoT)”, Jartel, vol. 13, no. 4, pp. 402-410, Dec. 2023.