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Abstract—Autonomous drones require accurate navigation and localization algorithms to carry out their duties. Outdoors 
drones can utilize GPS for navigation and localization systems. However, GPS is often unreliable or not available at all 
indoors. Therefore, in this research, an autonomous indoor drone navigation model was created using a deep learning 
algorithm, to assist drone navigation automatically, especially in indoor corridor areas. In this research, only the Caddx 
Ratel 2 FPV camera mounted on the drone was used as an input for the deep learning model to navigate the drone forward 
without a collision with the wall in the corridor. This research produces two deep learning models, namely, a rotational 
model to overcome a drone's orientation deviations with a loss of 0.0010 and a mean squared error of 0.0009, and a 
translation model to overcome a drone's translation deviation with a loss of 0.0140 and a mean squared error of 0.011. The 
implementation of the two models on autonomous drones reaches an NCR value of 0.2. The conclusion from the results 
obtained in this research is that the difference in resolution and FOV value in the actual image captured by the FPV camera 
on the drone with the image used for training the deep learning model results in a discrepancy in the output value during 
the implementation of the deep learning model on autonomous drones and produces low NCR implementation values. 
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I. INTRODUCTION 

Unmanned Aerial Vehicles (UAV) or drones are flying 
vehicles that can be operated remotely by the pilot or can control 
themselves (autonomous). Over the last few decades, drone 
technology has been widely used by research institutes as 
research objects because of the flexibility and performance of 
drones that can be utilized for various human purposes, such as 
in agriculture, mining, construction, geology, archaeology, 
surveys, inspections, firefighting, photography, and other 
sectors. Drones can be classified based on several factors such 
as size, average takeoff weight, control configuration, and 
degree of autonomy. One of the popular drones is the 
quadcopter. A quadcopter is a type of drone that uses a four-
rotor drive. Quadcopters are also included in multi-rotor drones 
which generally fall under the category of vertical-takeoff-and-
landing (VTOL) vehicles with the ability to hover in place [1]. 

In carrying out their duties as utilization for humans, drones 
require accurate navigation and localization methods and 
algorithms [2], both drones with remote manual control and 
autonomous drones. In most outdoor environments, autonomous 
drone navigation has been successfully carried out by utilizing 
a global positioning system (GPS). The Global Positioning 
System (GPS) helps obtain the drone's position and orientation, 
aiding in navigation [3]. On the other hand, the disadvantage of 
GPS is that it is often unreliable or unavailable at all in most 
indoor environments, such as inside buildings, urban 
environments, and underwater. This makes the drone task 
difficult and complex to navigate. 

Several solutions have been proposed for indoor 
autonomous navigation. One of them is Simultaneous 
Localization and Mapping (SLAM). Using a laser range finder, 
RGB-D sensor, or single camera, a 3-D map of an unknown 

indoor environment and its position on the map can be inferred 
for autonomous flight [4]. Another solution is based on stereo 
vision. By calculating the disparity between stereo images, depth 
can be estimated [5]. The SLAM method is not practical for 
drones because it requires heavy computing to build 3D models. 
In addition, 3D structures that are built often do not perform well 
in environments without traceable features (e.g., walls). The 
depth estimated by stereo vision shows poor performance in 
areas without texture and may suffer from specular reflection. 
The fact that most publicly available quadcopters only have one 
internal camera makes the solution impractical [6]. 

Therefore, in this research, an autonomous drone navigation 
model will be designed that allows the quadcopter to 
automatically navigate indoors, especially in the corridor area. 
This model does not require a proximity sensor but uses a single 
camera for navigation determination [7]. The approach is to train 
the regression model by utilizing one of the Deep learning 
algorithms, Convolutional Neural Network (ConvNet), from the 
corridor image data set [8]. The model's output in this study is a 
value that is a reference measure for the direction of the 
quadcopter when flying. System implementation begins when 
the ground station consistently receives visual input images from 
the camera mounted on the quadcopter and then returns flight 
commands (yawing, pitching, and rolling) from the results of the 
trained model. The quadcopter is expected to be able to fly from 
end to end of various types of corridors without colliding with 
the corridor walls. 

 
II.  METHODS 

A. System Workflow 
In the system flowchart in Fig.1. shows the system workflow 

design. First, after the drone and GCS are connected, the program 
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on the GCS will make the drone fly vertically as high as one 
meter. At the same time, the drone will also send images 
captured by the FPV camera to the GCS. The image received by 
the GCs will be processed by the deep learning model, and the 
output of the model will issue a command for the next action to 
be carried out by the drone. The command will then be sent to 
the drone. commands can be drone move forward, roll right, roll 
left, yaw right, yaw left, and land. The process of sending 
images by drones, processing images, and sending commands 
by GCS will continue to be carried out until a landing command 
is issued by GCS. 

 
Figure 1. System Workflow 

 
B.  System Block Diagram 

The block diagram of the system shows the overall system 
design, where there are two places for information processing, 
namely the vehicle and the ground control station. The vehicle 
is equipped with a camera module connected to a computer 
using telemetry, Pixhawk as flight control, electronic speed 
controller as a speed controller for the four brushless motors. At 
the Ground Control Station, there is a ROTG, the liaison 
between the camera and the computer, and different telemetry 
to send navigation commands from the deep learning model 
output to the quadcopter. The block diagram of the system is 
shown in Fig. 2. 

 
Figure 2. System Block Diagram 

C.  Quadcopter Manufacturing Planning 
In this study, an assembled quadcopter is used to apply the 

deep learning model that has been created. The use of an 
assembled quadcopter can provide advantages in future 
development. The assembled quadcopter design can be seen in 
Fig. 3. and Fig. 4. Explanation of the parts on the assembled 
quadcopter as follows: 
1. Propeller as a quadcopter propulsion in order to fly. 
2. Frame as the body frame on the quadcopter to put all the 

components. 

3. Electronic Speed Controller (ESC) as a regulator of motor 
rotation speed. 

4. Flight Controller (FC) Pixhawk as the main controller of the 
quadcopter. 

5. FPV camera to get a picture that is in front of the quadcopter 
6. Motors. 
7. Lidar sensor as a sensor to determine the height of the 

quadcopter. 
8. Optical Flow sensor to help stabilize the quadcopter. 

 
Figure 3. Top view quadcopter design 
 

 
Figure 4. Bottom view quadcopter design 

 
D.  Dataset 

The dataset used in this study is named NITRCorrV1 which 
has been created and used in this study [2], the data used for this 
study amounted to 21000 training images and 600 testing images 
for the translation model and used 21000 training images and 300 
testing images for the rotation model. This dataset provides 
ground truth in terms of deviations with respect to the Central 
bisector line (CBL) corridor. The CBL line is used to measure 
the translation deviation and rotation of the quadcopter at the 
center of the corridor. Fig. 5. is an example of images on the 
dataset used. 

Figure 5. Images on dataset 



Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022) 

E-ISSN: 2654-6531 P- ISSN: 2407-0807  260 
 

 
E.  Proposed Model Deep Learning Architecture 
1)  Architecture 

 
Figure 6. Architecture Model 
 

The model architecture in this study uses the Pre-Trained 
Model Resnet50V2 which has been provided in the TensorFlow 
framework. The architecture of the model can be seen in Fig. 6. 
When using Transfer Learning Techniques, it takes changes to 
the top layer or layer classification in the model used and 
changes to the input layer according to research needs. The input 
layer is changed according to the existing dataset and in 
accordance with the research objectives. The shape of the input 
layer will be changed to (3, 180, 320) with the format (channel 
image, height, width) and rescaling is carried out to change the 
input scale to [-1,1]. The choice of ResNet50V2 was because in 
previous studies [2] ResNet50 produced MSE, MAE and MRE 
values as the second smallest evaluation metrics after 
DenseNet-161. ResNet50V2 is a development of ResNet50 with 
a smaller internal size of 103 compared to ResNet 50 of 107, has 
a better Top-1 Accuracy and Top-5 Accuracy [9]. 
2)  Optimizer 

Optimizer in this study using Adam. Previously, training 
experiments were carried out only on the rotational model and 
not the entire model using Adam, RMSprop and SGD with the 
same model architecture and model parameters as in Table I. 
The results of loss, loss validation, evaluation metrics and 
validation evaluation metrics on Adam are the smallest as 
shown in Fig. 7, Fig. 8., and Fig. 9. 
3)  Loss Function 

The loss function in this study will use two loss functions, 
namely Mean Absolute Error (MAE) and Mean Squared Error 
(MSE). Both loss functions will be trained as a whole to choose 
the smallest loss before being implemented on the quadcopter. 
4)  Metrics 

The Metrics Model in this study uses the Mean Squared 
Error (MSE) which is recommended from this study [10]. MSE 
was chosen because it was in accordance with the 
considerations, namely because this study compared several 
different predictions, using the same value and scale and there 
was a zero value in the prediction. 

 
Figure 7. Model results using Adam Optimizer 

 

 
Figure 8. Model results using the RMSprop Optimizer 

 

 
Figure 9. Model results using the SGD Optimizer 

 
5)  Parameters 

TABLE I  
PARAMETERS MODEL 

Parameter Model Value 
Number of Epoch 50 

Learning Rate 0.0001 
Number of Epoch Fine-Tuning 10 

Learning Rate Fine-Tuning 0.00001 
Optimizer Adam 

Evaluation Metrics MSE 
Loss Function MAE and MSE 
Size of Batch 50 

Re-scaling 1/127.5 

 
The model parameter is a value that forms a model, all the 

parameters in Table I can be changed according to the research 
objectives. In this study using Adam as the optimizer, MSE as 
evaluation metrics, learning rates of 0.0001, batch size of 50, 
number of epochs of 50 and rescaling to make a range of values 
from -1 to 1. Only one loss function was chosen to be applied to 
the quadcopter of the two. The loss function used is MAE and 
MSE. 

 
III. RESULTS AND DISCUSSION 

A. Quadcopter Planning Results 
The results of the quadcopter planning include assembling all 

the components used to make the quadcopter such as flight 
controller, motor, ESC, battery, FPV camera. The placement of 
each component is shown in Fig. 10 and Fig. 11. 

 

Figure 10. Quadcopter front view 

Explanation of the parts on the assembled quadcopter as follows: 
1. Flight Controller (FC) Pixhawk 2.4.8. 
2. Holybro 100 MW 915 MHz Telemetri Radio V3. 
3. Propeller type 1045. 
4. Motor Brushless 920Kv. 
5. FPV Camera Caddx Ratel 2. 
6. Battery Lippo 4S. 
7. Frame 450 Multicopter. 
8. Race Ranger VTX FPV Transmitter 
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9. PX4Flow. 
10. Lidar sensor. 
11. Electronic Speed Controller (ESC) 40A Spider. 

 

 
Figure 11. Quadcopter bottom view 
 
B. Model Results with MSE loss function 

The choice of loss function in the model lies in the model 
compiler section. In the compiler model section, there is the use 
of the Adam optimizer which functions as a model learning tool 
to minimize losses caused by the MSE loss function. The 
evaluation metric used is the same as the loss function, MSE. 

 
Figure 12. Model performance results with loss function MSE before fine-
tuning. Rotational model (1), Translation model (2) 
 

The top and bottom left images are the results of the metrics 
used, while the right images are the results of the loss function. 
The right and left images look the same because the loss 
function and evaluation metrics used are the same, using MSE. 
Fig. 12. (1) is the result of the rotation model with a loss value 
of 0.0017, a validation loss of 0.0139, a mean squared error of 
0.0017, and a validation of the mean squared error of 0.0139. 

Fig. 12. (2) is the result of the translation model with a loss 
value of 0.0168, a validation loss of 0.1827, a mean squared 
error of 0.0168, and a validation of a mean squared error of 
0.1827. The difference in the validation values generated by the 
two models can identify overfitting or can be caused by a lack 
of epochs in training. 

Fig. 13 is the result of the performance of the rotation and 
translation model using the loss function MSE after fine-tuning. 
The rotation model got a loss value of 0.0010, a validation loss 

of 0.0009, a mean squared error of 0.0010, and a validation of 
the mean squared error of 0.0009, there was a much better 
improvement after fine-tuning each validation value. These 
results indicate an overfitting problem before the fine-tuning can 
be completed. 

 
Figure 13. Model performance results with loss function MSE after fine-tuning. 
Rotational model (1), Translation model (2) 

 
In the translation model from Fig. 13, the model gets a loss 

value of 0.0140, a validation loss of 0.0114, a mean squared error 
of 0.0140, and a validation of the mean squared error of 0.0114. 
These results make the model much better than before fine-
tuning, just like the rotation model, the overfitting problem can 
be solved. 

 
C. Model Results with MAE loss function 

In this section, the model uses MAE loss function and 
evaluation metrics uses MSE and the same parameter settings as 
in the model with MSE loss function. 

v 
Figure 14. Model performance results with loss function MAE before fine-tuning. 
Rotational model (1), Translation model (2) 

 
Results of the model in this section can be seen in Fig. 14. 

The image on the left is the result of the metrics used, while the 
image on the right is the result of the loss function. Fig. 14. (1) is 
the result of the rotation model with a loss value of 0.0293, a loss 
validation of 0.0633, a mean squared error of 0.0018 and a 
validation of the mean squared error of 0.0153. Fig. 14. (2) is the 
result of the translation model with a loss value of 0.0908, a loss 
validation of 0.2528, a mean squared error of 0.0177 and a 
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validation of the mean squared error of 0.2199. The difference 
in the validation values generated by the two models can 
identify overfitting or can be caused by a lack of epochs in 
training. 

 
Figure 15. Model performance results with loss function MAE after fine-tuning. 
Rotational model (1), Translation model (2) 

 
Fig. 15. is the result of the performance of the rotation and 

translation model using the loss function mae after fine-tuning. 
The rotation model gets a loss value of 0.0277, a validation loss 
of 0.0181, a mean absolute error of 0.0015 and a validation of 
the mean absolute error of 0.0007. These results are much better 
than the model before fine-tuning, the value of each validation 
is close to the loss value and the error indicates overfitting 
indications can be overcome. 

In the translation model from Fig. 15., the loss value is 
0.0803, the validation loss is 0.0486, the mean absolute error is 
0.0148 and the mean absolute error validation is 0.0079. These 
results make the model much better than before fine-tuning, just 
like the rotation model, the overfitting problem can be solved. 

TABLE II 
OVERALL PERFORMANCE RESULTS OF MODEL 

 

 
Model 

MAE MSE 

Loss Error Loss Error 

Val loss Val error Val loss Val error 

Rotation 
0.0293 0.0018 0.0017 0.0017 

0.0633 0.0153 0.0139 0.0139 

Rotation after 
Fine Tuning 

0.0277 0.0015 0.0010 0.0010 

0.0181 0.0007 0.0009 0.0009 

Translation 
0.0908 0.0177 0.0168 0.0168 

0.2528 0.2199 0.1827 0.1827 

Translation 
after Fine 
Tuning 

0.0803 0.0148 0.0140 0.0140 

0.0486 0.0079 0.0114 0.0114 

 
Table II shows the overall performance results of all models 

using both MAE and MSE loss functions and the model results 
before and after fine-tuning. Loss, error and validation values 
are obtained from the two smallest values in the model using the 
MSE loss function. Therefore, a model with an MSE loss 
function was chosen to be implemented on a quadcopter as a 
tool to generate navigation commands. 

D.  Results of Model Implementation on Quadcopter 
The model and quadcopter that have been made will be tested 

in the corridor of the 3rd floor of the Electrical Building of the 
State Polytechnic of Malang.  

 

 
Figure 16. Display on GCS during model implementation on quadcopter 

 
Quadcopter will be controlled autonomously starting from 

take-off to landing at the end of the corridor. The success 
parameter of this test is using NCR (No-Collision-Ratio). NCR 
is the number of quadcopter tests that managed to pass through 
the corridor without a collision divided by the number of tests 
performed. 

TABLE III 
TEST RESULTS OF DEEP LEARNING MODEL AND QUADCOPTER IN THE 

CORRIDOR 

Test Place Take-off 
Through the 

corridor 
Flight 

distance 

1st 
Corridor 
3rd floor 

Succeed Not successful 1 meter 

2nd 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

3rd 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

4th 
Corridor 
3rd floor 

Succeed Succeed 5 meters 

5th 
Corridor 
3rd floor 

Succeed Succeed 5 meters 

6th 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

7th 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

8th 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

9th 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

10th 
Corridor 
3rd floor 

Succeed Not successful 0 meter 

 
Based on Table III, the test was carried out ten times and the 

quadcopter successfully passed the corridor twice, then the NCR 
value was 0.2. 
 
E.  Analysis of Model Implementation Results on Quadcopter 

The analysis is carried out on each model output with a 
different image input, image input from the fpv camera and 
image input from the cellphone camera. The images from the 
FPV camera have a field of view (FOV) value of 165 degrees, 
while the cellphone camera has no FOV value. 

The image from the cellphone camera resembles the image 
used to train each model. The resolution on the fpv camera is 
1200 TVL or the equivalent of 1.2 megapixels, while the images 
from the cellphone camera are 13 megapixels and the image 
resolution used to train the model is 0.05 megapixels. Each test 
image will have the same ground truth as the reference using the 
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CBL line. Images with the same ground truth mean the location 
and direction of facing the same quadcopter as in Fig. 17. 

 
Figure 17. (a) FPV camera results, (b) Mobile camera results 

 
This test is carried out in order to find out which parts are 

not in line with expectations and cause failure in the whole 
system. Fig. 17. is an image from an FPV camera and an image 
from a cellphone camera with identical CBL lines. The CBL 
lines in both images form a 90 degrees angle and divide the 
image into two nearly equal planes. The calculation for the 
rotation model is counting the number of pixels from the CBL 
line to the left side of the image and normalization is carried out 
so that the values are in the range 0 to 1, both images are 
expected to get the output value of the rotation model close to 
0.5 or from 0.4 to 0.6. The calculation for the translation model 
is to calculate the angle produced by the CBL line with the 
bottom side of the image and normalize it so that the value is in 
the range 0 to 3.14, both images are expected to get the output 
value of the translation model from 1.47 to 1.67. 

 
Figure 18. Testing using mobile phone image input on the rotation model 

 
Fig. 18. shows the results of the model for rotation and 

produces an output of 0.5. The calculation for the rotation model 
and the suitability of the image with the label shows the correct 
results. The input image is shown in Fig. 17. which shows the 
quadcopter right in the middle of the corridor. The calculation 
for the rotation model is to calculate the number of pixels from 
the CBL line to the left side of the image with a value range 
between 0 to 1 after normalization. In this result, the CBL 
imaginary line will stretch to divide the two image planes 
equally and produce almost the same number of pixels. The 
pixel values will be normalized and produce a value of 0.5 
which means the model produces the correct output. 

Fig. 19. shows the results of the model for translation and 
produces an output of 1.54. The calculation for the translation 
model and the suitability of the image with the label shows the 
correct results. The input image is shown in Fig. 17. which 
shows the quadcopter right in the middle of the corridor. The 
calculation for the translation model is to calculate the angle 
produced by the CBL line with the left side of the image with a 
range of values from 0 to 3.14 after normalization. In this result, 
the CBL imaginary line will stretch to divide the two image 

planes equally and produce an angle value of 90 degrees. The 
angle value will be normalized and produce a value of 1.54 which 
means the model produces the correct output. 

 

 
Figure 19. Testing using mobile phone image input on the translation model 
 

 

 
Figure 20. Testing using FPV camera image input on the rotation model 
 

Fig. 20. shows the results of the model for rotation and 
produces an output of 0.85. The calculation for the rotation 
model and the fit of the image with the label shows wrong results. 
The input image is shown in Fig. 17. which shows the quadcopter 
right in the middle of the corridor. In this result, the CBL 
imaginary line will stretch to divide the two image planes equally 
and produce the same number of pixels. The pixel value will be 
normalized and produce a value of 0.85 which means the model 
produces an incorrect output. 

 
Figure 21. Testing using FPV camera image input on the translation model 

 
Fig. 21. shows the results of the model for translation and 

produces an output of 0.88. The calculation for the translation 
model and the suitability of the image with the label shows the 
wrong result. The input image is as shown in Fig. 17. which 
shows the quadcopter right in the middle of the corridor. In this 
result, the CBL imaginary line will spread the two image planes 
equally and produce an angle value of 90 degrees. The angle 
value will normalize and produce a value of 0.88, which means 
the model produces an incorrect output. 
 

IV. CONCLUSION 

Based on the background, problems, planning, 
implementation, testing, and discussion, it is concluded that the 
results of the implementation of the two models on the 
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quadcopter get a low NCR value of 0.2. These results are 
influenced by differences in the image processed by the model 
from the camera image on the quadcopter with the image used 
for model training. The difference between the two images is the 
FOV value and resolution of the image. The image produced by 
the Caddx Ratel 2 FPV camera has an FOV of 165 degrees and 
has a resolution of 1.2 megapixels, while the images used for 
deep learning model training have no FOV value and have a 
resolution of 0.05 megapixels. 
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